1、导数存在和可导没有区别,导数存在的条件:函数在该点的左右导数存在且相等,不能证明这点导数存在。只有左右导数存在且相等,并且在该点连续,才能证明该点可导。
2、可导的函数一定连续;连续的函数不一定可导,不连续的函数一定不可导。
3、不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。
声明:若涉及版权问题,请联系我们进行删除!谢谢大家!
1、导数存在和可导没有区别,导数存在的条件:函数在该点的左右导数存在且相等,不能证明这点导数存在。只有左右导数存在且相等,并且在该点连续,才能证明该点可导。
2、可导的函数一定连续;连续的函数不一定可导,不连续的函数一定不可导。
3、不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。