您的位置:首页 > 百科大全 |

弱作用力下的衰变 | 弱相互作用力引起β衰变

1. 弱相互作用力引起β衰变

弱相互作用力,简称弱力,四种基本力中第二弱的、作用距离第一短的一种力。它只作用于电子、夸克、中微子等费米子,并制约着放射性现象,而对光子、引力子等玻色子不起作用。

宇宙中已知的四种基本力包括:引力,电磁力,强相互作用力(强力),弱相互作用力(弱力)。四种基本力参数以一种微妙的平衡构成了如今已知的宇宙环境,这些参数甚至可以精确到小数点后无数位,其中任何一项参数的改变都会令整个宇宙发生彻底的变化,其中一项力的改变可以令宇宙崩溃也不是不可能的。当然这四种基本力的微妙平衡是巧合还是必然还不是现阶段的技术水平所能获知的。

2. 引起衰变的力是什么力

强核力将质子和中子中的夸克束缚在一起,并将原子中的质子和中子束缚在一起。一般认为,称为胶子的另一种自旋为1的粒子携带强作用力。它只能与自身以及与夸克相互作用。强核力总是把粒子束缚成不带颜色的结合体。由于夸克有颜色(红、绿或蓝),人们不能得到单独的夸克。反之,一个红夸克必须用一串胶子和一个绿夸克以及一个蓝夸克联结在一起(红+绿+蓝=白)。这样的三胞胎构成了质子或中子。其他的可能性是由一个夸克和一个反夸克组成的对(红+反红,或绿+反绿,或蓝+反蓝=白)。这样的结合构成称为介子的粒子。

弱核力是造成放射性原子核或自由中子衰变的短程力,它制约着放射性现象,并只作用于自旋为1/2的物质粒子, 而对诸如光子、引力子等自旋为0、1或2的粒子不起作用。

强核力、弱核力在原子核附近的发力机制属一种短程力,但这种短程力对外界产生影响时,都全部转化成长程力,以光子为载体,如太阳辐射的巨大能量主要来自强核力。所以可以视强核力、弱核力、电磁力都有一个从短程力向长程力转化的过程,这种短程力表现为在原子内的发力机制。

3. 衰变与结合能

核能(或称原子能)是通过转化其质量从原子核释放的能量,符合阿尔伯特·爱因斯坦的方程E=mc²,其中E=能量,m=质量,c=光速常量。核能通过三种核反应之一释放:1、核裂变,打开原子核的结合力。2、核聚变,原子的粒子熔合在一起。3、核衰变,自然的慢得多的裂变形式。

结合能:原子核是核子凭借核力结合在一起构成的,要把它们分开,也需要能量,这就是原子核的结合能。结合能并不是由于核子结合成原子核而具有的能量,而是为把核子分开而需要的能量。说白了就是把某一个原子核完全分解成单个核子所需要吸收的能量。

4. 弱相互作用是引起原子核β衰变的原因

β衰变是原子核自发地放射出β粒子或俘获一个轨道电子而发生的转变。放出电子的衰变过程称为β-衰变;放出正电子的衰变过程称为β+衰变;原子核从核外电子壳层中俘获一个轨道电子的衰变过程称为轨道电子俘获。

俘获K层电子叫K俘获,俘获L层的叫L俘获,其余类推。通常,K俘获的几率最大。在 β衰变中,原子核的质量数不变,只是电荷数改变了一个单位。原子核进行一次贝塔衰变后,电荷数增加1,新核在周期表上的位置要向后移动1格。

5. 弱相互作用是引起衰变的原因

放射性是指元素从不稳定的原子核自发地放出射线,(如α射线、β射线、γ射线等)而衰变形成稳定的元素而停止放射(衰变产物),这种现象称为放射性。衰变时放出的能量称为衰变能量。原子序数在83(铋)或以上的元素都具有放射性,但某些原子序数小于83的元素(如锝)也具有放射性。頭條萊垍

原子核自发地放射出各种射线的现象,如α、β、γ放射性等。萊垍頭條

1896年,法国科学家A.-H.贝可勒尔在研究铀盐的荧光现象时,发现含铀物质能发射出穿透力很强的不可见的射线,使照相底片感光。后来,经过人们的多年研究,终于证明它是三种成分组成的:一种是高速运动的氦原子核粒子束,称为α 射线。它的电离作用大,贯穿本领小,穿不透一张薄纸。另一种是高速运动的电子束,称为β射线。它的电离作用较小,贯穿本领较大,但仍穿不透一张薄金属片。第三种是波长很短的电磁波,称为γ射线。它的电离作用最小,贯穿本领最大,可以穿过例如1厘米厚的铅板。萊垍頭條

放射性射线的性质、发射机制以及各种科技上的应用,一直是原子核物理学研究的一个重要的方面。萊垍頭條

放射性有天然放射性和人工放射性之分。天然放射性是指天然存在的放射性核素所具有的放射性。它们大多属于由重元素组成的三个放射系(即钍系、铀系和锕系)。人工放射性是指用核反应的办法所获得的放射性。人工放射性最早是在1934年由法国科学家约里奥-居里夫妇发现的(见人工放射性核素)。垍頭條萊

现在知道,许多天然和人工生产的核素都能自发地放射出射线。放出的射线类型除α、β、γ以外,还有正电子、质子、中子、中微子等其他粒子。能自发地放射出射线的核素,称为放射性核素(以前常称为放射性同位素),也叫不稳定核素。实验表明,温度、压力、磁场都不能显著地影响射线的发射。这是由于温度等只能引起核外电子状态的变化,而放射现象是由原子核内部变化引起的,同核外电子状态的改变关系很小。除自发裂变外,放射现象一般与衰变过程有关,主要同α衰变、β衰变过程有关。萊垍頭條

α 放射性出现在α衰变过程中。此时,衰变后的剩余核(通常叫子核)与衰变前的原子核(通常叫母核)相比,原子序数减少2,质量数减少4。α衰变是母核通过强相互作用和隧道效应,发射α 粒子而发生的。萊垍頭條

β放射性出现在β衰变过程中。β衰变有三种类型:① β衰变,放出正电子和中微子的β衰变;② β衰变,放出电子和反中微子的β衰变;③ 轨道电子俘获,俘获一个轨道电子并放出一个中微子的过程。β衰变是通过弱相互作用而发生的。頭條萊垍

γ放射性通常和α衰变或β衰变有联系。α 和β衰变的子核往往处于激发态。处于激发态的原子核要放出γ射线而向较低激发态或基态跃迁,这叫γ跃迁。因此,γ射线的自发放射一般是伴随α 或β射线产生的。條萊垍頭

β衰变所形成的子核,当其激发能足够高时,有可能放射中子、质子或α 粒子,甚至可以产生裂变。这些衰变类型分别叫做β缓发中子发射(β-n)、β缓发质子发射(β-p)、β缓发α 发射(β-α)和β缓发裂变(β-f)。萊垍頭條

自发裂变是放射现象的另一种类型(见核裂变)。某些重核可以自发地分裂成两个质量相差不多的原子核,并放出几个中子。萊垍頭條

质子放射性也是放射性的一种。例如处于激发态的放射性垍頭條萊

能自发地放射出质子,这是迄今人们惟一知道的不属于缓发质子的质子放射性的例子。萊垍頭條

6. 弱相互作用力引起什么衰变

弱相互作用是基本粒子之间一种特殊作用,和强相互作用,电磁作用和万有引力作用并成为四种基本作用力。其比强相互作用和电磁作用强度都弱,其作用范围比强相互作用还要小。强相互作用力是核子间相互交换介子产生。

强相互作用强相互作用的理论是量子色动力学(QCD)

·带电粒子之间有电磁相互作用

·带色荷的粒子之间有强相互作用

强作用场 为颜色场,胶子

带色荷的粒子交换胶子 强相互作用

胶子:J=1 m=0 带有色荷

组成复合粒子 胶子球

胶子质量为零,怎样说明核力的短程性?

无色核子间的作用是基本强相互作用的一种剩余效应.

·两个中性原子之间没有相互作用靠近电子云重叠出现作用力称为范德瓦尔斯力,

·核子是不带色荷的两核子靠得很近 核子1内的夸克可被核子2内的夸克感觉到 出现强相互作用强子之间的力程很短.�

强相互作用是作用于强子之间的力,是所知四种宇宙间基本作用力最强的,也是作用距离最短的(大约在 10-15 m 范围内).核子间的核力就是强相互作用,它抵抗了质子之间的强大的电磁力,维持了原子核的稳定.现在物理学家认为强相互作用的产生与夸克、胶子有关.

弱相互作用弱相互作用

weak interaction

自然界的4种基本相互作用之一.简称弱作用.弱相互作用是基本粒子之间一种特殊作用,它和强相互作用,电磁作用和万有引力作用并成为四种基本作用力.由于弱相互作用比强相互作用和电磁作用的强度都弱,故有此名,其作用范围比强相互作用还要小.

有两种弱相互作用,一种是有轻子(电子e,中微子ν,μ子以及它们的反粒子)参与的反应,如β衰变,μ子的衰变以及π介子的衰变等;另一种是Κ介子和∧超子的衰变.这两种弱相互作用的强度相同,都比强相互作用弱1012倍,相互作用时间约为10^(-6)~10^(-8)s .

7. 弱相互作用与β衰变

原子核自发地放射出β粒子或俘获一个轨道电子而发生的转变。放出电子的衰变过程称为β-衰变;放出正电的衰变过程称为β+衰变;原子核从核外电子壳层中俘获一个轨道电子的衰变过程称为轨道电子俘获,俘获K层电子叫K俘获,俘获L层的叫L俘获,其余类推。通常,K俘获的几率量大。在β衰变中,原子核的质量数不变,只是电荷数改变了一个单位。

外电子俘获也是β衰变的一种,称为电子俘获β衰变。因为β粒子就是电子,而电子的质量比起核的质量来要小很多,所以一个原子核放出一个β粒子后,它的质量只略为减少。 β衰变的规律是新核的质量数不变,电荷数增加。

新核在元素周期表中的位置要向后移一位。β衰变中放出的电子能量是连续分布的,但对每一种衰变方式有一个最大的限度,可达几兆电子伏特以上,这部分能量由中微子带走。1957年,吴健雄博士用钴-60的β衰变实验证明了在弱相互作用中的宇称不守恒。