您的位置:首页 > 百科大全 |

大脑神经元作用 | 大脑神经元作用机制

1. 大脑神经元作用机制

神经元既神经细胞,人体神经系统约8-10兆,脑部要点百分之七十以下,大脑皮层是运动神经元意见建议:大脑皮层是运动神经元,最为丰富,最少在脑部的百分之三十以上。

人体各年龄阶段不同,神经细胞的数量也不同

2. 大脑神经元作用机制是

脑电波是一种使用电生理指标记录大脑活动得方法,大脑在活动时,大量神经元同步发生的突触后电位经总和后形成的。

脑电波是一些自发的有节律的神经电活动,其频率变动范围在每秒1-30次之间的,可划分为四个波段,即δ(1-3Hz)、θ(4-7Hz)、α(8-13Hz)、β(14-30Hz)。

1、δ波:频率为1~3Hz,幅度为20~200μV。当人在婴儿期或智力发育不成熟、成年人在极度疲劳和昏睡或麻醉状态下,可在颞叶和顶叶记录到这种波段。

2、θ波:频率为4~7Hz,幅度为5~20μV。在成年人意愿受挫或者抑郁以及精神病患者中这种波极为显著。但此波为少年(10-17岁)的脑电图中的主要成分。

3、α波:频率为8~13Hz(平均数为10Hz),幅度为20~100μV。它是正常人脑电波的基本节律,如果没有外加的刺激,其频率是相当恒定的。人在清醒、安静并闭眼时该节律最为明显,睁开眼睛(受到光刺激)或接受其它刺激时,α波即刻消失。

4、β波:频率为14~30Hz,幅度为100~150μV。当精神紧张和情绪激动或亢奋时出现此波,当人从噩梦中惊醒时,原来的慢波节律可立即被该节律所替代。

3. 大脑神经元的作用

神经元与神经元之间,或神经元与非神经细胞(肌细胞、腺细胞等)之间的一种特化的细胞连接,称为突触 (The synapse is a specialized point of functional contact between neurons or between a neuron and a target organ (i.e., muscle) that allows neurons to communicate with one another or with their target cells.) 它是神经元之间的联系和进行生理活动的关键性结构。突触可分两类,即化学性突触(chemical synapse)和电突触(electrical synapse)。通常所说的突触是指前者而言。

(一)化学性突触

光镜下,多数突触的形态是轴突终未呈球状或环状膨大, 附在另一个神经元的胞体或树突表面,其膨大部分称为突触小体(synaptic corpuscle)或突触结(synaptic bouton)。根据两个神经元之间所形成的突触部位,则有不同的类型,最多的为轴-体突触(axo-somatic synapse)和轴-树突触(axo-axonal synapse)此外还有轴-棘突触(axo-spinous),轴-轴突触(axo-axonal synapse)和树-树突触(dendroden-driticsynapse)等等。通常一个神经元有许多突触,可接受多个神经元传来的信息,如脊髓前角运动神经元有2000个以上的突触。大脑皮质锥体细胞约有30000个突触。小脑浦肯野细胞可多达200 000个突触,突触在神经元的胞体和树突基部分布最密,树突尖部和轴突起始段最少。

电镜下,突触由三部分组成:突触前部、突触间隙和突触后部。突触前部和突触后部相对应的细胞膜较其余部位略增厚,分别称为突触前膜和突触后膜,两膜之间的狭窄间隙称为突触间隙。

突触前部(presynaptic element)神经元轴突终末呈球状膨大,轴膜增厚形成突触前膜(presynaptic membrane), 厚约6~7nm。在突触前膜部位的胞浆内,含有许多突触小泡(synaptic vesicle)以及一些微丝和微管、线粒体和滑面内质网等。突触小泡是突触前部的特征性结构,小泡内含有化学物质,称为神经递质(neurotransmitter)。各种突触内的突触小泡形状和大小颇不一致,是因其所含神经递质不同。常见突触小泡类型有:

球形小泡(spherical vesicle),直径约20~60nm,小泡清亮,其中含有兴奋性神经递质,如乙酰胆碱;

颗粒小泡(granular vesicle),小泡内含有电子密度高的致密颗粒,按其颗粒大小又可分为两种:小颗粒小泡直径约30~60nm,通常含胺类神经递质如肾上腺素、去甲肾上腺素等;大颗粒小泡直径可达80~200nm,所含的神经递质为5-羟色胺或脑啡肽等肽类;

扁平小泡(flat vesicle),小泡长径约50nm,呈扁平圆形,其中含有抑制性神经递质,如γ-氨基丁酸等。

各种神经递质在胞体内合成,形成小泡,通过轴突的快速顺向运输到轴突末端。新近研究发现在中枢和周围神经系统中,有两种或两种以上神经递质共存(coexistence neurotransmitter)于一个神经元中,在突触小体内可有两种或两种以上不同形态的突触小泡。如交感神经节内的神经细胞,有乙酸胆碱和血管活性肠肽(acetylcholine and vasoactive intestinal polypeptide)。前者支配汗腺分泌;后者作用于腺体周围的血管平滑肌使其松弛,增加局部血流量。神经递质共存的生理功能,是协调完成神经生理活动作用,使神经调节更加精确和协调。目前,许多事实表明,递质共存不是个别现象,而是一个普遍性规律,有许多新的共存递质和新的共存部位已被证实。其中多为非肽类递质(胆碱类、单胺类和氨基酸类)和肽类递质共存。

关于突触小泡的包装、储存和释放递质的问题,现已知突触体素(synaptophysin),突触素(synapsin)和小泡相关膜蛋白(vesicle associated membrane protein VAMP)等三种蛋白与之有关。突触体素是突触小泡上Ca2+的结合蛋白,当兴奋剂到达突触时,Ca2+内流突然增加而与这种蛋白质结合,可能对突触小泡的胞吐起重要作用。突触素是神经细胞的磷酸蛋白,有调节神经递质释放的作用,小泡相关膜蛋白(VAMP)是突触小泡膜的结构蛋白,可能对突触小泡代谢有重要作用。

突触后部(postsynaptic element)多为突触后神经元的胞体膜或树突膜,与突触前膜相对应部分增厚,形成突触后膜(postsynaptic membrane)。厚为20~50nm,比突触前膜厚,在后膜具有受体和化学门控的离子通道。根据突触前膜和后膜的胞质面致密物质厚度不同,可将突触分为Ⅰ和Ⅱ两型: ①Ⅰ型突触(tyPe Ⅰ synapse)后膜胞质面致密物质比前膜厚,因而膜的厚度不对称,故又称为不对称突触(asymmetrical synapse);突触小泡呈球形,突触间隙较宽(20~50nm);一般认为Ⅰ型突触是兴奋性突触,主要分布在树突干上的轴-树突触。 ②Ⅱ型突触(type Ⅱ synapse)前、后膜的致密物质较少,厚度近似,故称为对称性突触(symmetrical synapse),突触小泡呈扁平形,突触间隙也较窄(10~20nm)。认为Ⅱ型突触是一种抑制性突触,多分布在胞体上的轴-体突触。

突触间隙(synaptic space)是位于突触前、后膜之间的细胞外间隙,宽约20~30nm,其中含糖胺多糖(如唾液酸)和糖蛋白等,这些化学成分能和神经递质结合,促进递质由前膜移向后膜,使其不向外扩散或消除多余的递质。

突触的传递过程,是神经冲动沿轴膜传至突触前膜时,触发前膜上的电位门控钙通道开放,细胞外的Ca2+进入突触前部,在ATP和微丝、微管的参与下,使突触小泡移向突触前膜,以胞吐方式将小泡内的神经递质释放到突触间隙。其中部分神经递质与突触后膜上的相应受体结合,引起与受体偶联的化学门控通道开放,使相应的离子经通道进入突触后部,使后膜内外两侧的离子分布状况发生改变,呈现兴奋性(膜的去极化)或抑制性(膜的极化增强)变化,从而影响突触后神经元(或效应细胞)的活动。使突触后膜发生兴奋的突触,称兴奋性突触(exitatory synapse),而使后膜发生抑制的称抑制性突触(inhibitory synapse)。突触的兴奋或抑制决定于神经递质及其受体的种类,神经递质的合成、运输、储存、释放、产生效应以及被相应的酶作用而失活,是一系列神经元的细胞器生理活动。一个神经元通常有许多突触,其中有些是兴奋性的,有些是抑制性的。如果兴奋性突触活动总和超过抑制性突触活动总和,并达到能使该神经元的轴突起始段发生动作电位,出现神经冲动时,则该神经元呈现兴奋,反之,则表现为抑制。

Presynaptic events: Presynaptic Membrane Depolarized-->Calcium Influx-->Vesicle Docking & Fusion--> Neurotransmitter Release

Postsynaptic events: Neurotransmitter binding-->particular excitability effect: Excitatory or Inhibitory (EPSP/IPSP)

EPSP是突触前膜释放兴奋性递质,作用突触后膜上的受体, 引起细胞膜对Na+、K+等离子的通透性增加(主要是Na+),导致Na+内流,出现局部去极化电位。

IPSP是突触前膜释放抑制性递质(抑制性中间神经元释放的递质),导致突触后膜主要对Cl-通透性增加,Cl-内流产生局部超极化电位。

特点:① 突触前膜释放递质是Ca2+内流引发的; ② 递质是以囊泡的形式以出胞作用的方式释放出来的; ③ EPSP和IPSP都是局部电位,而不是动作电位; ④ EPSP和IPSP都是突触后膜离子通透性变化所致,与突触前膜无关。

化学突触的特征,是一侧神经元通过出胞作用释放小泡内的神经递质到突触间隙,相对应一侧的神经元(或效应细胞)的突触后膜上有相应的受体。具有这种受体的细胞称为神经递质的效应细胞或靶细胞,这就决定了化学突触传导为单向性。突触的前后膜是两个神经膜特化部分,维持两个神经元的结构和功能,实现机体的统一和平衡。故突触对内、外环境变化很敏感,如缺氧、酸中毒、疲劳和麻醉等,可使兴奋性降低。茶碱、碱中毒等则可使兴奋性增高。

(二)电突触

电突触是神经元间传递信息的最简单形式,在两个神经元间的接触部位,存在缝隙连接,接触点的直径约为0.1~10μm以上。也有突触前、后膜及突触间隙。突触的结构特点,突触间隙仅1~1.5nm,前、后膜内均有膜蛋白颗粒,显示呈六角形的结构单位,跨跃膜的全层,顶端露于膜外表,其中心形成一微小通道,此小管通道与膜表面相垂直,直径约为2.5nm,小于1nm的物质可通过,如氨基酸。缝隙连接两侧膜是对称的。相邻两突触膜,膜蛋白颗粒顶端相对应, 直接接触,两侧中央小管,由此相通。轴突终末无突触小泡,传导不需要神经递质,是以电流传递信息,传递神经冲动一般均为双向性。神经细胞间电阻小,通透性好,局部电流极易通过。电突触功能有双向快速传递的特点,传递空间减少,传送更有效。

现在已证明,哺乳动物大脑皮质的星形细胞,小脑皮质的篮状细胞、星形细胞,视网膜内水平细胞、双极细胞,以及某些神经核,如动眼神经运动核前、庭神经核、三叉神经脊束核,均有电突触分布。电突触的形式多样,可见有树-树突触、体-体突触、轴-体突触、轴-树突触等。(星形细胞间连接:电突触)

电突触对内、外环境变化很敏感。在疲劳、乏氧、麻醉或酸中毒情况下,可使兴奋性降低。而在碱中毒时,可使兴奋性增高。

连接部位的神经细胞膜并不增厚,膜两侧旁胞浆内无突触小泡,两侧膜上有沟通两细胞胞浆的通道蛋白,允许带电离子通过而传递电信号。 电突触传递的功能是促进不同神经元产生同步性放电。

0

4. 大脑神经元作用机制图

神经元有两个主要组成部分,是神经元的胞体,胞体是神经元的主体,由细胞膜、细胞质和细胞核三个部分构成,主要用来储存营养物质、整合以及发放神经冲动。

神经元的周边有突起,是它的第两个组成部分,突起分为树突和轴突。

树突比较短,用来接收其它神经元发放的冲动,轴突一般较长,呈细丝状向外延伸,有的还包括有髓鞘,其主要功能用来运输营养物质,以及传导神经冲动,有髓纤维的髓鞘是传导的主体,其上有郎飞氏结,神经冲动经过郎飞氏结呈跳跃性传导,所以传播速度非常快。

5. 大脑神经元作用机制是什么

镜像神经元是大脑中一种具有特别能力的神经元,它是人类“代入感”及“同理心”的生物基础。它的作用就像一面镜子,让我们能反映和模仿他人行为,产生“感同身受”的体验。而天生发达的大脑镜像神经元,是泪点低的原因之一。

比如,看到别人吃东西,自己也会流口水;看见他人发怒,自己的头皮也会发紧;别人情绪低落,我们内心也不好受……所以,泪点低、“动不动就哭”,不是太脆弱、敏感,而可能是镜像神经元太发达。

6. 神经元作用机理

突触指两个神经元之间或神经元与效应器细胞之间相互接触、并借以传递信息的部位。

按信息传递物质的性质一化学和电突触

突触前细胞借助化学信号,即递质,将信息转送到突触后细胞,称化学突触,若借助于电信号传递信息,则称电突触。

在哺乳动物进行突触传递的几乎都是化学突触;电突触主要见于鱼类和两栖类。

此外,偶有发现一些同时是化学又是电的混合突触。化学突触实现神经传导的过程:当神经冲动从轴突传导到末端时,突触前膜透性发生变化,使Ca从膜上的Ca '通道大量进入突触前膜。此时,含递质的突触囊泡可能是由于Ca的作用而移向突触前膜,突触囊泡的膜与突触前膜融合而将递质排出至突触间隙。突触后膜表面上有递质的受体,递质和受体结合而使介质中的Na '大量涌入细胞,于是静息电位变为动作电位,神经冲动发生,并沿着这一神经元的轴突传导出去。这就是通过神经递质的作用,使神经冲动通过突触而传导到另一神经元的机制。

电突触的特点是:(1)突触前后两膜很接近,神经冲动可以直接通过,速度快;(2)传导没有方向之分,形成电突触的2个神经元的任何一个发生冲动,即可以通过电突触而传给另一个神经元。

7. 大脑神经元工作原理

人类大脑的功耗只有20瓦,每天只吃一点食物就能维持能量供给。显而易见,如果想继续推动电脑进步,最好继续模仿人脑。

所谓神经形态(neuromorphic)技术,就是要让计算摆脱简单的神经网络,转而运行在更像大脑神经元和突触的电路之中。

这种物理类脑电路发展已久,过去三十五年来,全球各地的实验室已经建造出各种像突触和树突一样的人工神经元部件,并能真实的响应和产生电信号。

8. 脑神经元工作原理

脑电波是指大脑产生一个想法或者说意念时,大脑内的神经元之间产生电位的变化,进而产生电流,通过大脑皮层就可以检测到微弱的电流。不同的想法对应不同的电流信号(大概就是这样吧)。

脑电波获取的方法分为有创型和无创型。

有创型是指将电极植入大脑皮层,优点很明显,噪声小,信号强等。缺点就不用说了吧!

无创型是指将电极放在大脑皮层外(就好像戴个帽子,对人体无伤害),但是这样获取的脑电信号很容易受外界干扰,即噪声大,信号也很微弱。

一般采用32导联或64导联的电极帽,确定参考电极,因为经过大脑皮层后电流很微弱,需要用到放大器(10000倍左右)。

再利用脑电信号处理软件(常用的是Scan)对脑电信号进行分析。

整体流程是:预处理-特征提取-模式分类。

预处理主要就是降噪(肌电伪迹,眨眼伪迹,50HZ工频干扰等),具体方法有小波变换,独立分量等。

特征提取就是从降噪后的脑电信号中提取能够表达不同意识的特征向量,主要有时域分析和频域分析。

模式分类简单的说就是将特征向量分成几个类别。主要方法有线性分析,人工神经网络法以及支持向量机(常用)。

9. 人脑神经元工作原理

神经网络

从信息处理角度对人脑神经元网络进行抽象,建立某种简单模型,按不同的连接方式组成不同的网络,是20世纪80年代以来人工智能领域兴起的研究热点。 神经网络是一种运算模型,由大量的节点(或称神经元)之间相互联接构成。