您的位置:首页 > 百科大全 |

磷酸果糖激酶的作用 | 磷酸果糖激酶的特性

1. 磷酸果糖激酶的特性

巴斯德效应是指在厌氧条件下,向高速发酵的培养基中通入氧气,则葡萄糖消耗减少。这种抑制发酵产物积累的现象。相比起的情况,酵母在的情况下消耗更多的葡萄糖,生物细胞和组织中的糖发酵为氧所抑制,这种现象是巴斯德(L.Pasteur)1861年在研究酵母的酒精发酵量和氧分压之间的关系中发现的,故称巴斯德效应。由于从呼吸(完全氧化)所得的能量,远大于等量糖发酵所得的能量,因此为了获得对维持生命活动所需的能量,在有氧情况下与无氧下相比,只消耗少量的糖即足。生物体根据氧的有无,来调节糖的分解量,而使能量得到节制。

效应中糖异生消耗能量:通过糖异生合成一分子葡萄糖要消耗6分子ATP。 活动量大的动物,其骨骼肌的颜色比畜养起来的动物的更红,-这正是巴斯德效应:经常运动,也能在一定程度上供给能量。因为前者的血供比后者更好,而好的血供能为骨骼肌提供更多的氧气。 没有线粒体的细胞(红血球)是没有巴斯德效应的。肿瘤细胞能够绕过巴斯德效应,这是因为肿瘤细胞的调节功能失常,这会导致大量乳酸产生。在过去有人想利用这一点治疗肿瘤。

2. 磷酸果糖激酶的特性不包括

如果是正常生理情况下考虑整体性的话,是的,特殊情况下,例如中毒症状,强烈抑制ATP合酶活性,就导致ADP积累.另外,就局部来看,ATP与ADP的含量也不是绝对平衡的,是在一个调控范围内.因为细胞内很多生化反应都是耦联的,一些反应和ATP水解耦联从而可以通过ATP含量的变化调控反应的进行.所以在调控过程中,ATP和ADP不是平衡的,是在一个生理阶段ATP含量高,到了另一阶段可能ADP含量就搞了.最显著的例子就是在糖酵解过程中ATP含量对磷酸果糖激酶的调节.

3. 磷酸果糖激酶是变构酶

ATP转化为ADP是ATP水解酶;ADP转化为ATP是ATP合成酶。

ADP通过ADP和ATP合酶转变成ATP。

人体内约有50.7gATP,只能维持剧烈运动0.3秒,ATP与ADP可迅速转化,保持一种平衡。ADP转化成ATP过程,需要能量。当ADP与磷酸基结合并获得8千卡能量,可形成ATP。

对于动物、人、真菌和大多数细菌来说,均来自细胞进行呼吸作用时有机物分解所释放的能量。对于绿色植物来说,除了依赖呼吸作用所释放的能量外,在叶绿体内进行光合作用时,ADP转化为ATP还利用了光能。

4. 磷酸果糖激酶是什么酶

k+是钾元素的钾离子。

K+是植物细胞中含量最丰富的阳离子之一,对生物体具有重要的生理功能。土壤中增施钾肥能显著影响树体的生长,增加植物组织中。

k+含量,对生长的影响系数为0. 709 ,对树体整体影响系数为0. 56。K+能促进细胞内酶的活性。细胞内有50多种酶或完全依赖于K+ ,或受K+ 的激活,如丙酮酸激酶、谷胺合成酶、62磷酸果糖激酶等都能被K+ 激活。

5. 磷酸果糖激酶的特性是什么

k+是钾离子。钾离子是一种重要的农业肥料,可作为钾肥使用。不仅如此,它还是人体的一大元素,是人体的重要组成部分,也是大多数生物的必需元素。元素原子量:39.10。发现者:戴维。K+是植物细胞中最常见的阳离子之一,具有重要的生理功能。植物组织中K+含量增加,生长系数为0.709,对整株树的影响系数为0.56。K+能促进细胞内酶的活性,细胞内有50多种酶或完全依赖于K+,或K+对K+的激活,如丙酮酸激酶、谷氨酰胺合成和62磷酸果糖激酶等都能被K+激活。

6. 磷酸果糖激酶活性受哪些因素的影响

我来举例子吧。

比如说糖酵解,糖酵解能产生丙酮酸和少量的ATP,而丙酮酸则是三羧酸循环的底物乙酰辅酶A的前体,在三羧酸循环中,底物被充分氧化,释放的电子,经电子传递链后产生大量的ATP。在糖酵解过程中,磷酸果糖激酶是其的关键酶(因为其催化的反应是不可逆的,且催化速度是最慢的)。该酶会受高浓度的ATP的抑制。如体内的ATP含量过高,既抑制了磷酸果糖激酶的活性,造成丙酮酸产量的下降,从而降低ATP的产生,实现调控能力。

7. 果糖激酶和磷酸果糖激酶

糖酵解的关键酶:有3个,即己糖激酶、6-磷酸果糖激酶-1和丙酮酸激酶,它们催化的反应基本上都是不可逆的。调节方式有别构调节和共价修饰调节。1.6-磷酸果糖激酶-16-磷酸果糖激酶-1对调节糖酵解途径的流量最重要,通变构调节糖酵解的进行。别构激活剂:AMP;ADP;F-1,6-2P;F-2,6-2P别构抑制剂:柠檬酸;ATP(高浓度)ATP对6-磷酸果糖激酶-1的调节:ATP与6-磷酸果糖激酶-1活性中心底物结合部位的ATP浓度低时,ATP对6-磷酸果糖激酶-1起变构激活的作用。当活性中心外别构调节部位ATP高浓度时ATP起抑制作用。2,6-双磷酸果糖对6-磷酸果糖激酶-1的调节:2,6-双磷酸果糖是6-磷酸果糖激酶-1最强的变构激活剂;其作用是与AMP一起取消ATP、柠檬酸对6-磷酸果糖激酶-1的变构抑制作用。2.丙酮酸激酶丙酮酸激酶是糖酵解的第二个重要的调节点,受到别构调节和共价修饰调节。别构激活剂:1,6-二磷酸果糖别构抑制剂:ATP,丙氨酸3.己糖激酶己糖激酶受到反馈抑制调节,其中长链脂肪酰CoA和6-磷酸葡萄糖会抑制己糖激酶的活性,胰岛素则会激活己糖激酶的活性。

8. 磷酸果糖激酶的特性是

凡使酶活性增强的效应剂称变构激活剂(allosteric activitor),它能使上述S型曲线左移,饱和量的变构激活剂可将S形曲线转变为矩形双曲线。

凡使酶活性减弱的效应剂称变构抑制剂(allosteric inhibitor),能使S形曲线右移。例如,ATP是磷酸果糖激酶的变构抑制剂,而ADP、AMP为其变构激活剂。

9. 为什么磷酸果糖激酶是关键酶

1、糖酵解的3个关键酶(限速酶):记忆:六(6磷酸果糖激酶-1)斤(己糖激酶)冰(丙酮酸激酶)糖

2、糖原分解的限速酶:磷酸化酶

3、糖异生的关键酶:记忆:笨手(丙酮酸羧化酶)郭二(果糖二磷酸酶)泼硫酸(葡萄糖-6-磷酸酶)

4、磷酸戊糖途径关键酶:6-磷酸葡萄糖脱氢酶

5、酮体合成关键酶:HMG-CoA合成酶——记忆:同贺

6、胆固醇合成关键酶:记忆:但愿(HMG-CoA还原酶)

7、血红素合成的关键酶:ALA合酶

8、转氨酶的辅酶(关键酶):磷酸吡哆醛——VitB6

9、胆固醇转变为胆汁酸关键酶:7α-羟化酶。

10、嘌呤核苷酸从头合成关键酶:PRPP合成酶

10. 磷酸果糖激酶受到什么激活和抑制

糖酵解途径(glycolytic pathway)是指细胞在胞浆中分糖酵解

解葡萄糖生成丙酮酸(pyruvate)的过程,此过程中伴有少量ATP的生成。在缺氧条件下丙酮酸被还原为乳酸(lactate)称为糖酵解。有氧条件下丙酮酸可进一步氧化分解生成乙酰CoA进入三羧酸循环,生成CO2和H2O.

葡萄糖不能直接扩散进入细胞内,其通过两种方式转运入细胞:一种是与Na+共转运方式,它是一个耗能逆浓度梯度转运,主要发生在小肠粘膜细胞、肾小管上皮细胞等部位;另一种方式是通过细胞膜上特定转运载体将葡萄糖转运入细胞内,它是一个不耗能顺浓度梯度的转运过程。已知转运载体有5种,其具有组织特异性如转运载体-1(GLUT-1)主要存在于红细胞,而转运载体-4(GLUT-4)主要存在于脂肪组织和肌肉组织。

糖酵解分为两个阶段共10个反应,每个分子葡萄糖经第一阶段共5个反应,消耗2个分子ATP为耗能过程,第二阶段5个反应生成4个分子ATP为释能过程。

第一阶段

(1)葡萄糖的磷酸化(phosphorylation of glucose)

进入细胞内的葡萄糖首先在第6位碳上被磷酸化生成6-磷酸葡萄糖(glucose 6 phophate,G-6-P),磷酸根由ATP供给,这一过程不仅活化了葡萄糖,有利于它进一步参与合成与分解代谢,同时还能使进入细胞的葡萄糖不再逸出细胞。催化此反应的酶是己糖激酶(hexokinase,HK)。己糖激酶催化的反应不可逆,反应需要消耗能量ATP,Mg2+是反应的激活剂,参与反应实际为Mg2+ATP2-复合物。它能催化葡萄糖、甘露糖、氨基葡萄糖、果糖进行不可逆的磷酸化反应,生成相应的6-磷酸酯,6-磷酸葡萄糖是HK的反馈抑制物,此酶是糖氧化反应过程的限速酶(rate limiting enzyme)或称关键酶(key enzyme)它有同工酶Ⅰ-Ⅳ型,Ⅰ、Ⅱ、Ⅲ型主要存在于肝外组织,其对葡萄糖Km值为10-5~10-6M

Ⅳ型主要存在于肝脏,特称葡萄糖激酶(glucokinase,GK),对葡萄糖的Km值1~10-2M,正常血糖浓度为5mmol/L,当血糖浓度升高时,GK活性增加,葡萄糖和胰岛素能诱导肝脏合成GK,GK能催化葡萄糖、甘露糖生成其6-磷酸酯,6-磷酸葡萄糖对此酶无抑制作用。

(2)6-磷酸葡萄糖的异构反应(isomerization of glucose-6-phosphate)

这是由磷酸己糖异构酶(phosphohexose isomerase)催化6-磷酸葡萄糖(醛糖aldose sugar)转变为6-磷酸果糖(fructose-6-phosphate,F-6-P)的过程,此反应是可逆的。

(3)6-磷酸果糖的磷酸化(phosphorylation of fructose-6-phosphate)

此反应是6磷酸果糖第一位上的C进一步磷酸化生成1,6-二磷酸果糖,磷酸根由ATP供给,催化此反应的酶是磷酸果糖激酶1(phosphofructokinase l,PFK1)。

PFK1催化的反应是不可逆反应,它是糖的有氧氧化过程中最重要的限速酶,它也是变构酶,柠檬酸、ATP等是变构抑制剂,ADP、AMP、Pi、1,6-二磷酸果糖等是变构激活剂,胰岛素可诱导它的生成。

(4)1.6 二磷酸果糖裂解反应(cleavage of fructose 1,6 di/bis phosphate)

醛缩酶(aldolase)催化1.6-二磷酸果糖生成磷酸二羟丙酮和3-磷酸甘油醛,此反应是可逆的。

(5)磷酸二羟丙酮的异构反应(isomerization of dihydroxyacetonephosphate)

磷酸丙糖异构酶(triose phosphate isomerase)催化磷酸二羟丙酮转变为3-磷酸甘油醛,此反应也是可逆的。

到此1分子葡萄糖生成2分子3-磷酸甘油醛,通过两次磷酸化作用消耗2分子ATP.

⒉第二阶段:

(6)3-磷酸甘油醛氧化反应(oxidation of glyceraldehyde-3-phosphate

此反应由3-磷酸甘油醛脱氢酶(glyceraldehyde 3-phosphatedehydrogenase)催化3-磷酸甘油醛氧化脱氢并磷酸化生成含有1个高能磷酸键的1,3-二磷酸甘油酸,本反应脱下的氢和电子转给脱氢酶的辅酶NAD+生成NADH+H+,磷酸根来自无机磷酸。

(7)1.3-二磷酸甘油酸的高能磷酸键转移反应

在磷酸甘油酸激酶(phosphaglycerate kinase,PGK)催化下,1.3-二磷酸甘油酸生成3-磷酸甘油酸,同时其C1上的高能磷酸根转移给ADP生成ATP,这种底物氧化过程中产生的能量直接将ADP磷酸化生成ATP的过程,称为底物水平磷酸化(substrate level phosphorylation)。此激酶催化的反应是可逆的。

(8)3-磷酸甘油酸的变位反应

在磷酸甘油酸变位酶(phosphoglycerate mutase)催化下3-磷酸甘油酸C3-位上的磷酸基转变到C2位上生成2-磷酸甘油酸。此反应是可逆的。

(9)2-磷酸甘油酸的脱水反应

由烯醇化酶(enolase)催化,2-磷酸甘油酸脱水的同时,能量重新分配,生成含高能磷酸键的磷酸烯醇式丙酮酸(phosphoenolpyruvate PEP)。本反应也是可逆的。

(10)磷酸烯醇式丙酮酸的磷酸转移

在丙酮酸激酶(pyruvate kinase,PK)催化下,磷酸烯醇式丙酮酸上的高能磷酸根转移至ADP生成ATP,这是又一次底物水平上的磷酸化过程。但此反应是不可逆的。

丙酮酸激酶是糖的有氧氧化过程中的限速酶,具有变构酶性质,ATP是变构抑制剂,ADP是变构激活剂,Mg2+或K+可激活丙酮酸激酶的活性,胰岛素可诱导PK的生成,烯醇式丙酮酸又可自动转变成丙酮酸。