您的位置:首页 > 百科大全 |

光导纤维

简称光纤,一种由玻璃制成、能传输光线、结构特殊的玻璃纤维。也有少数是由合成树脂制成的高分子光导纤维,如聚甲基丙烯酸甲酯和聚苯乙烯等。不论纤维如何挠曲,当光线从它的一端射入,大部分光线可以经纤维传送至另一端。1926年和1927年由英国人G.L.贝尔德和美国人C.W.汉塞尔分别申请有关可挠透明石英纤维束的专利。60年代,美国发现其军用价值,从而奠定工业生产的基础,英国、联邦德国、苏联、日本等相继开展研制,中国自70年代后也开始研制。1966年,美国杜邦公司等开始销售高分子光导纤维,之后,日本三菱人造丝公司和旭化成工业公司等相继生产。1983年一年中已敷设光缆的光导纤维总长达270Mm。

结构原理

光导纤维是由两层折射率不同的玻璃组成。内层为光内芯,直径在几微米至几十微米,外层的直径0.1~0.2mm。一般内芯玻璃的折射率比外层玻璃大1%。根据光的折射和全反射原理,当光线射到内芯和外层界面的角度大于产生全反射的临界角时,光线透不过界面,全部反射。这时光线在界面经过无数次的全反射,以锯齿状路线在内芯向前传播,最后传至纤维的另一端。这种光导纤维属皮芯型结构。若内芯玻璃折射率是均匀的,在界面突然变化降低至外层玻璃的折射率,称为阶跃型结构。如内芯玻璃断面折射率从中心向外变化到低折射率的外层玻璃,称为梯度型结构。外层玻璃具有光绝缘性和防止内芯玻璃受污染。另一类光导纤维称自聚焦型结构,它好似由许多微双凸透镜组合而成,迫使入射光线逐渐自动地向中心方向会聚,这类纤维中心的折射率最高,向四周连续均匀地减少,至边缘为最低。

生产方法

(1)管棒法:将内芯玻璃棒插入外层玻璃管中(尽量紧密),熔融拉丝;

(2)双坩埚法:在两个同心铂坩埚内,将内芯和外层玻璃料分别放入内、外坩埚中;

(3)分子填充法:将微孔石英玻璃棒浸入高折射率的添加剂溶液中,得所需折射率分布的断面结构,再进行拉丝操作,它的工艺比较复杂。在光导纤维通信中还可用内外气相沉积法等,以保证能制造出光损耗率低的光导纤维。光导纤维应用时还要做成光缆,它是由数根光导纤维合并先组成光导纤维芯线,外面被覆塑料皮,再把光导纤维芯线组合成光缆,其中光导纤维的数目可以从几十到几百根,最大的达到4000根(见彩图)。

光导纤维的烧制分类和特征

按材质分,有无机光导纤维和高分子光导纤维,目前在工业上大量应用的是前者。无机光导纤维材料又分为单组分和多组分两类。单组分即石英,主要原料为四氯化硅、三氯氧磷和三溴化硼等。其纯度要求铜、铁、钴、镍、锰、铬、钒等过渡金属离子杂质含量低于10ppb。除此之外,OH-离子要求低于10ppb。石英纤维已被广泛使用。多组分的原料较多,主要有二氧化硅、三氧化二硼、硝酸钠、氧化铊等。这种材料尚未普及。高分子光导纤维是以透明聚合物制得的光导纤维,由纤维芯材和包皮鞘材组成。芯材为高纯度高透光性的聚甲基丙烯酸甲酯或聚苯乙烯抽丝制得的纤维,外层为含氟聚合物或有机硅聚合物等。

光导通信的研究和实用化,与光导纤维的低损耗密切相关。光能的损耗可否大大降低,关键在于材料纯度的提高。玻璃材料中的杂质产生的光吸收,造成了最大的光损耗,其中过渡金属离子特别有害。目前,由于玻璃材料的高纯度化,这些杂质对光导纤维的损耗影响已很小。

石英玻璃光导纤维的优点是损耗低,当光波长为1.0~1.7μm(约14μm附近),损耗只有1dB/km,在1.55μm处最低,只有0.2dB/km。高分子光导纤维的光损耗较高,1982年,日本电信电报公司利用氘化甲基丙烯酸甲酯聚合抽丝作芯材,光损耗率降低到20dB/km。但高分子光导纤维的特点是能制大尺寸,大数值孔径的光导纤维,光源耦合效率高,挠曲性好,微弯曲不影响导光能力,配列、粘接容易,便于使用,成本低廉。但光损耗大,只能短距离应用。光损耗在10~100dB/km的光导纤维,可传输几百米。

应用

多股光导纤维做成的光缆可用于通信,它的传导性能良好,传输信息容量大,一条通路可同时容纳十亿人通话。可以同时传送千套电视节目,供自由选看。光导纤维内窥镜可导入心脏和脑室,测量心脏中的血压、血液中氧的饱和度、体温等。用光导纤维连接的激光手术刀已在临床应用,并可用作光敏法治癌。

光导纤维可以把阳光送到各个角落,还可以进行机械加工。计算机、机器人、汽车配电盘等也已成功地用光导纤维传输光源或图像。如与敏感元件组合或利用本身的特性,则可以做成各种传感器,测量压力、流量、温度、位移、光泽和颜色等。在能量传输和信息传输方面也获得广泛的应用。

高分子光导纤维开发之初,仅用于汽车照明灯的控制和装饰。现在主要用于医学、装饰、汽车、船舶等方面,以显示元件为主。在通信和图像传输方面,高分子光导纤维的应用日益增多,工业上用于光导向器、显示盘、标识、开关类照明调节、光学传感器等,同时也用在装饰显示、广告显示。

参考书目
    Takanori Okoshi, Optical Fibres, Academic Press, New York,1982.