通过把一个合数分解为两个或两个以上质因数,来解答应用题的解题方法叫做分解质因数法。
分解质因数的方法在求最大公约数和最小公倍数时有用,在学习有理数的运算、因式分解、解方程等方面也有广泛的应用。分解质因数的方法还可为一些数学问题提供新颖的解法,有益于开辟解题思路,启迪创造性思维。
例1:
ABC×D=1673,在这个乘法算式中,A、B、C、D代表不同的数字,ABC是一个三位数。求ABC代表什么数?(适于六年级程度)
解:因为ABC×D=1673,ABC是一个三位数,所以可把1673分解质因数,然后把质因数组合成一个三位数与另一个数相乘的形式,这个三位数就是ABC所代表的数。
1673=239×7
答:ABC代表239。
例2:
一块正方形田地,面积是2304平方米,这块田地的周长是多少米?(适于六年级程度)
解:先把2304分解质因数,并把分解后所得的质因数分成积相同的两组质因数,每组质因数的积就是正方形的边长。
2304=2×2×2×2×2×2×2×2×3×3
=(2×2×2×2×3)×(2×2×2×2×3)
=48×48
正方形的边长是48米。
这块田地的周长是:
48×4=192(米)
答略。
*例3:
有3250个桔子,平均分给一个幼儿园的小朋友,剩下10个。已知每一名小朋友分得的桔子数接近40个。求这个幼儿园有多少名小朋友?(适于六年级程度)
解:3250-10=3240(个)
把3240分解质因数:
3240=23×34×5
接近40的数有36、37、38、39
这些数中36=22×32,所以只有36是3240的约数。
23×34×5÷(22×32)
=2×32×5
=90
答:这个幼儿园有90名小朋友。
*例4:
105的约数共有几个?(适于六年级程度)
解:求一个给定的自然数的约数的个数,可先将这个数分解质因数,然后按一个质数、两个质数、三个质数的乘积……逐一由小到大写出,再求出它的个数即可。
因为,105=3×5×7,
所以,含有一个质数的约数有1、3、5、7共4个;
含有两个质数的乘积的约数有3×5、3×7、5×7共3个;
含有三个质数的乘积的约数有3×5×7共1个。
所以,105的约数共有4 3 1=8个。
答略。
铜陵有色怎么样(铜陵有色有几个厅级干部)赫拉气垫怎么样(赫拉气垫有几个系列)国台酒怎么样(国台酒有几个系列产品)张家界景点有哪些(张家界有几个景区)常德有哪些县(常德市有几个区)顺丰有哪些(顺丰快递分公司有几个)沧州有哪些县(山东菏泽有几个县)会计职能有哪些(会计的基本职能有几个)安海是哪里(安海镇有几个村)贵港是哪里的(贵港市有几个县和区)