您的位置:首页 > 百科大全 |

丙二酸对tca循环的作用 | tca循环和乙醛酸循环

1. tca循环和乙醛酸循环

不是。催化苹果酸生成丙酮酸的酶。其与苹果酸脱氢酶(Malate dehydrogenase)是两种不同的酶,应予以区分。已知有三种苹果酸酶(ME1.1.1.38—40)。其中以NADP为受体的酶(ME1.1.1.40)催化生成下列反应:ΔG°′=-0.36千卡。丙酮酸羧化反应(是H.G.Wood和C.H.Werkman,1938最初发现的反应)中有的是苹果酸酶的作用,有的是丙酮酸羧化酶的作用,在生物体内已知以后者的作用为主。两者都是供给三羧酸循环中间体的补充反应。苹果酸酶在胞浆内催化苹果酸脱羧是乙酰CoA从线粒体进入胞浆的柠檬酸--丙酮酸循环的一部分,其产生的NADPH很多将用于脂肪酸的合成。

2. 乙醛酸循环和TCA循环的差异

乙醛酸循环是植物细胞内脂肪酸氧化分解为乙酰CoA之后,在乙醛酸体(glyoxysome)内生成琥珀酸、乙醛酸和苹果酸;此琥珀酸可用于糖的合成的过程。

乙醛酸循环提高了生物体利用乙酰-CoA的能力。只要极少量的乙酰草酸做引物,乙醛酸循环就可以持续运行,不断产生琥珀酸,为TCA回补四碳单位。

3. tca循环与乙醛酸循环是如何通过

分为化学氧化和生化2种。

化学氧化没什么可说的,就是酸在氧化剂作用下的氧化过程。

生化则主要是

1,通过糖降解生成乳酸或乙醇。

2,通过有氧分解代谢生成乙酰CoA,后者通过TCA循环(主要,是哺乳动物产生ATP的重要途径)和乙醛酸循环(次要)彻底氧化为二氧化碳和水。

4. 乙醛酸循环和tca循环都能净产生琥珀酸

TCA是柠檬酸循环又称三羧酸循环,是机体供能的主要途径,丙酮酸进入柠檬酸循环的准备阶段,生成乙酰辅酶A,催化该阶段的酶称为丙酮酸脱氢酶系。

柠檬酸循环中,反应生成柠檬酸,顺乌头酸,异柠檬酸,草酰琥珀酸,α-酮戊二酸,琥珀酰辅酶A,琥珀酸,延胡索酸,苹果酸,草酰乙酸,草酰乙酸和乙酰辅酶A生成柠檬酸,这就是一个循环。乙醛酸途径又称乙醛酸循环,在线粒体和乙醛酸循环体中,天冬氨酸可以自由穿梭.。我有一张乙醛酸循环的扫描图,现在上传不上去了。要的话联系我,我给你发过去。

乙醛酸循环中,天冬氨酸经过天冬氨酸氨基转移酶,生成草酰乙酸,往下继续生成苹果酸,草酰乙酸。一条支路是琥珀酸进入线粒体生成草酰乙酸。以上可以看出两个循环中分别有相同的中间产物,根据不同的生理状态,机体做出不同的反应,如果机体需要能量,这主要通过柠檬酸循环途径,而乙醛酸循环中产生的草酰乙酸作为原料进入柠檬酸循环。

乙醛酸循环是植物所特有的循环途径,是有机物质积累的重要途径。

5. 乙醛酸循环作为TCA循环的变体

主要体现为底物降解的多途径、呼吸电子传递的多途径和末端氧化酶的多样性三个方面。

(1)呼吸底物降解的多途径:在植物体内存在着EMP-TCA,PPP,无氧呼吸,光呼吸,乙醛酸循环等呼吸途径,但植物并不是在任何时候任何条件下等同地利用这些途径。一般情况下植物是以EMP-TCA为主,因为该途径是植物体内物质和能量代谢的中心或枢纽,是正常生长发育和生理代谢所必需的。只有当环境条件变化使该途径受阻时,其他途径的比例才有所增大,如植物受伤和染病时,PPP的比例明显增大,增强对伤病的抵抗能力;又如环境缺氧时,无氧呼吸的比例会增高,以暂时适应无氧环境。因此这种呼吸途径的多样性增强了植物对环境的适应能力。

(2)呼吸电子传递的多途径:植物体内存在着多条呼吸电子传递途径,除细胞色素系统(呼吸链)电子主路(NADH→FMN→Fc.S→Q→b.b.cl→a.a3→02)外,还存在有抗氰呼吸电子传递支路(NADH→FMN→Fc.S→Q→b→02)等多条电子传递支路,通常是以呼吸链主路为主,其他支路则随不同生长发育阶段,不同环境条件和不同的组织器官而所占比例不同,常与特定的物质代谢和生理活动相联系,表现不同生理功能。

(3)末端氧化酶的多样性:末端氧化酶是指处于呼吸电子传递链的最末端,最终将电子传递给分子氧的酶。已知植物体内有细胞色素氧化酶,抗氰氧化酶,多酚氧化酶,抗坏血酸氧化酶,乙醇酸氧化酶,黄素氧化酶等多种呼吸电子传递的末端氧化酶。

6. tca循环和乙醛酸循环是如何通过异柠檬酸脱氢酶

1、无氧条件下,葡萄糖经糖酵解生成丙酮酸,然后经乳酸发酵生成乳酸(植物经乙醇发酵生成乙醇)。

2、有氧条件下,葡萄糖经糖酵解生成丙酮酸,丙酮酸在线粒体内生成乙酰辅酶A,乙酰辅酶A再经过TCA循环(或乙醛酸循环,只有植物有)最终生成二氧化碳和水。

3、葡萄糖也可以经磷酸戊糖途径,最终生二氧化碳和水。 葡萄糖是糖在血液中的运输形式,在机体糖代谢中占据主要地位;糖原是葡萄糖的多聚体,包括肝糖原、肌糖原和肾糖原等,是糖在体内的储存形式。

7. tca循环过程

一分子丙酮酸氧化脱羧生成一分子乙酰CoA的过程产生1分子NADH,对应3分子ATP;一分子乙酰CoA经过TCA循环产生12分子ATP,加起来是15分子ATP分子。不同版本的教材呼吸链的对应值不同,这道题是NADH呼吸链是1对3

8. tca循环和三羧酸循环

TCA循环的终点是乙酰CoA进入三羧酸循环彻底氧化(线粒体)。是需氧生物体内普遍存在的代谢途径,分布在线粒体。又称为柠檬酸循环或者三羧酸循环,或者以发现者Hans Adolf Krebs(英1953年获得诺贝尔生理学或医学奖)的姓名命名为Krebs循环。三羧酸循环是三大营养素(糖类、脂类、氨基酸)的最终代谢通路,又是糖类、脂类、氨基酸代谢联系的枢纽

9. 乙醛酸循环是TCA循环的一个分支

植物细胞内脂肪酸氧化分解为乙酰CoA之后,在乙醛酸体(glyoxysome)内生成琥珀酸、乙醛酸和苹果酸;此琥珀酸可用于糖的合成,该过程称为乙醛酸循环(glyoxylic acid cycle,GAC)。生理意义:

1、乙醛酸循环实现了脂肪到糖的转变,对植物的生长发育起着重要的作用。【示例】在油料作物种子发芽期,乙醛酸循环进行的非常活跃,在此期间种子中储藏的脂类经乙酰-CoA生成糖,及时供给生长点所需的能量和碳架,促进发芽、生长。

2、乙醛酸循环提高了生物体利用乙酰-CoA的能力。只要极少量的乙酰草酸做引物,乙醛酸循环就可以持续运行,不断产生琥珀酸,为TCA回补四碳单位。

10. tca循环有何特点

三羧酸循环(tricarboxylic acid cycle,TCA cycle)是需氧生物体内普遍存在的代谢途径。

原核生物中分布于细胞质,真核生物中分布在线粒体。因为在这个循环中几个主要的中间代谢物是含有三个羧基的有机酸,例如柠檬酸(C6),所以叫做三羧酸循环,又称为柠檬酸循环(citric acid cycle)或者是TCA循环;或者以发现者Hans Adolf Krebs(英1953年获得诺贝尔生理学或医学奖)的姓名命名为Krebs循环。

三羧酸循环是三大营养素(糖类、脂类、氨基酸)的最终代谢通路,又是糖类、脂类、氨基酸代谢联系的枢纽。

柠檬酸循环(citric acid cycle):也称为三羧酸循环(tricarboxylic acid cycle,TCA循环,TCA),Krebs循环。

是用于将乙酰CoA中的乙酰基氧化成二氧化碳和还原当量的酶促反应的循环系统,该循环的第一步是由乙酰CoA与草酰乙酸缩合形成柠檬酸。

反应物乙酰辅酶A(Acetyl-CoA)(一分子辅酶A和一个乙酰相连)是糖类、脂类、氨基酸代谢的共同的中间产物,进入循环后会被分解最终生成产物二氧化碳并产生H,H将传递给辅酶I--尼克酰胺腺嘌呤二核苷酸(NAD+) (或者叫烟酰胺腺嘌呤二核苷酸)和黄素腺嘌呤二核苷酸(FAD),使之成为NADH + H+和FADH2。

NADH + H+ 和 FADH2 携带H进入呼吸链,呼吸链将电子传递给O2产生水,同时偶联氧化磷酸化产生ATP,提供能量。

真核生物的线粒体基质和原核生物的细胞质是三羧酸循环的场所。它是呼吸作用过程中的一步,之后高能电子在NAHD+H+和FADH2的辅助下通过电子传递链进行氧化磷酸化产生大量能量。

一、三羧酸循环的发现过程:

克雷布斯博士在第二次世界大战爆发期间因受到纳粹的迫害,不得不逃往英国。虽然在德国,他是位非常优秀的医生,但是在英国,由于没有行医许可证,得不到社会的承认,他只能转而从事基础医学的研究。

刚开始选择课题时,仅仅因为他对食物在体内究竟是如何变成水和二氧化碳这一课题充满了兴趣,他便毫不犹豫地选择了这个课题,并且着手调查前人研究这一课题的各种材料。

在报告中,他看到有的学者报告说:"A物质经过氧化变成了B物质。"又有学者说:"C物质经过氧化变成了D物质,然后又进一步变成E物质。"还有学者认为:"C物质是从B物质中得到的。或者可以说,是F物质变成了G物质。"

另外一些学者则认为,是"G物质经过氧化变成A物质"等等。看着来自四面八方的研究报告,克雷布斯想,如果把这些零散的数据整理出来,说不定可以发现食物代谢的结构。就像玩解谜游戏那样,克雷布斯将这些数据仔细整理了一番,结果发现食物在体内是按F、G、A、B、C、D、E这样一个顺序变化的。

再仔细了解从A到F这些化学物质,发现E和F之间断了链。如果E和F之间存在一种X物质,那么,这条食物循环反应链就完整了。马上集中精力,全力寻找X物质。4年后终于查明,X物质就是如今放在饮料中作为酸味添加剂的柠檬酸。

他完成了食物的循环链,并且将它命名为柠檬酸循环。克雷布斯的循环理论解释了食物在体内进入柠檬酸循环后,按照A、B、C、D、E、X、F、G的顺序循环反应,最终氧化成二氧化碳和水。

他的伟大不仅仅在于发现了几个化学物质的变化,而且在于将每一个活的变化整理出来,找出了可以解释动态生命现象的结构。由于这一业绩,他在1953年获诺贝尔生理学或医学奖。柠檬酸循环也叫三羧酸循环或TCA循环。进入体内的营养成分在糖酵解→柠檬酸循环→电子传递等一系列呼吸作用下得到分解,产生能量。

二、化学反应:

乙酰辅酶A在循环中出现:柠檬酸(I)是循环中第一个产物,它是通过草酰乙酸(X)和乙酰辅酶A(XI)的乙酰基间的缩合反应生成的。如上所述,乙酰辅酶A是早先进行的糖酵解,氨基酸降解或脂肪酸氧化的一个产物。

三、总化学反应式:

Acetyl-CoA + 3 NAD + FAD + GDP + Pi + 2 H2O →CoA-SH + 3 NADH + 3 H + FADH2 + GTP + 2 CO2

值得注意的是,CO2的两个C并不来源于乙酰CoA,而是OAA。

三、原理

两个碳原子以CO2的形式离开循环。循环最后草酰乙酸会再次生成,再次从乙酰辅酶A中得到两个碳原子。就是说,一分子六碳化合物(柠檬酸)经过多部反应分解成一分子四碳化合物(草酰乙酸)。草酰乙酸会在接下来的反应中遵循同样的途径获得两个碳原子,再次成为柠檬酸。

能量会在接下来的其中一步反应里以GTP的形式释放(和ATP一样,是细胞的能量货币)。但是循环中生成的氢载体(NADH + H and FADH2)将会在细胞呼吸链里释放更多的能量 ,这也正是细胞呼吸的主要目的。

柠檬酸循环的前提是,早先进行的糖酵解等过程能提供足够的活化乙酸,以乙酰辅酶A的形式出现在循环。NADH+ H 和 FADH2是辅酶,它们能携带质子和电子,并在需要的时候释放它们。

循环中产生的总能量为一分子ATP(准确来说是:GTP),而细胞呼吸的全部四步反应(包括呼吸链中的内呼吸),一个葡萄糖分子则产生32分子的ATP。

2002年之前一直认为是38ATP,当时认为一个FADH2可以产生2个ATP,一个NADH2可以产生3个ATP,这是理想化化学计算的结果。实测一个FADH2可以产生1.5个ATP,一个NADH2可以产生2.5个ATP。详情请查阅电子传递链与氧化磷酸化。

如进行苹果酸穿梭则不会减少能量,还是32ATP,在脑等部位会进行3磷酸甘油穿梭,减少2分子ATP,最终净产生30ATP。所以说,在生物化学专业答题时需回答32或30。