您的位置:首页 > 百科大全 |

比色法

通过比较或测量有色物质溶液颜色深度来确定待测组分含量的方法。早在公元初古希腊人就曾用五倍子溶液测定醋中的铁。1795年,俄国人也用五倍子的酒精溶液测定矿泉水中的铁。但是,比色法作为一种定量分析的方法,大约开始于19世纪30~40年代。

显色反应

比色法是以生成有色化合物的显色反应为基础的,一般包括两个步骤:首先是选择适当的显色试剂与待测组分反应,形成有色化合物,然后再比较或测量有色化合物的颜色深度。比色分析对显色反应的基本要求是:

(1)反应应具有较高的选择性,即选用的显色剂最好只与待测组分反应,而不与其他干扰组分反应或其他组分的干扰很小;

(2)反应生成的有色化合物有恒定的组分和较高的稳定性;

(3)反应生成的有色化合物有足够的灵敏度,摩尔吸光系数一般应在104以上;

(4)反应生成的有色化合物与显色剂之间的颜色差别较大,它们的最大吸收浓度之差一般应在60纳米以上。选用的显色剂可以是一种试剂,也可以是两种不同的试剂。如果待测组分与两种不同的试剂反应生成一种有色化合物,则称为三元络合物显色反应。这类显色反应常常具有更高的灵敏度和选择性,在比色法和紫外-可见分光光度法中应用非常普遍。选择适当的显色反应,研究最合适的反应条件和消除干扰的方法是比色分析的关键问题。溶液的酸度、显色剂的用量、温度、溶剂等对显色反应都有影响。

比色方法

常用的比色法有两种:目视比色法和光电比色法,前者用眼睛观察,后者用光电比色计测量,两种方法都是以朗伯-比尔定律(见紫外-可见分光光度法)为基础。

常用的目视比色法是标准系列法,该法采用一组由质料完全相同的玻璃制成的直径相等、体积相同的比色管,按顺序加入不同量的待测组分标准溶液,再分别加入等量的显色剂及其他辅助试剂,然后稀释至一定体积,使之成为颜色逐渐递变的标准色阶。再取一定量的待测组分溶液于一支比色管中,用同样方法显色,再稀释至相同体积,将此样品显色溶液与标准色阶的各比色管进行比较,找出颜色深度最接近于样品显色溶液的那支标准比色管,如果样品溶液的颜色介于两支相邻标准比色管颜色之间,则样品溶液浓度应为两标准比色管溶液浓度的平均值。标准系列法的主要优点是设备简单和操作简便,但眼睛观察存在主观误差,准确度较低。

光电比色法是在光电比色计上测量一系列标准溶液的吸光度,将吸光度对浓度作图,绘制工作曲线,然后根据待测组分溶液的吸光度在工作曲线上查得其浓度或含量。光电比色计通常由光源(钨灯)、滤光片、吸收池、接收器(光电池或光电管)、检流计五部分组成(见图)。

图

光路结构上有单光电池式和双光电池式两种:单光电池式仪器的测量结果受光源强度变化影响较大,而双光电池式仪器则避免了这种影响。

与目视比色法相比,光电比色法消除了主观误差,提高了测量准确度,而且可以通过选择滤光片和参比溶液来消除干扰,从而提高了选择性。光电比色计和紫外-可见分光光度计的光路结构非常相似,它们之间所不同的地方在于:

(1)分光光度计采用棱镜或光栅作色散元件,因而可以得到纯度较高的单色光束。而光电比色计采用滤光片,只能得到一定波长范围的光谱带(复合光);

(2)紫外-可见分光光度计采用紫外和可见区的光源,即氢灯和钨灯,而光电比色计只用一种钨灯光源,因而前者适用于紫外-可见光谱区,而后者只适用于可见光谱区;

(3)紫外-可见分光光度计可以测定待测组分的精细吸收光谱,不仅可用于定量分析,而且可以作有机化合物的定性和结构分析,而光电比色计只能作定量分析。此外,分光光度计一般都采用灵敏度高的光电倍增管作检测器,而光电比色计一般用光电池或光电管作检测器。因此,光电比色计无论在测量的准确度、灵敏度和应用范围上都不如紫外-可见分光光度计。

在20世纪30~60年代,是比色分析发展的繁盛时期,它广泛用于冶金、地质、金属材料中微量的金属和部分非金属元素的测定。随着光学仪器制造技术的发展,紫外-可见分光光度计应用日益普及,精密度较高而价格又较低的紫外-可见分光光度计已逐渐代替光电比色计,分光光度法也随之逐渐代替了比色法。